Algorithm Problem Solving (APS):
Greedy Method

Niema Moshiri
UC San Diego SPIS 2019

Example: The Change Problem (USA Currency)
e Inthe USA, we commonly use the following coins:

o C={1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

Example: The Change Problem (USA Currency)
e Inthe USA, we commonly use the following coins:
o C={1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

e Input: A non-negative integer x (in cents, not dollars)

Example: The Change Problem (USA Currency)
e Inthe USA, we commonly use the following coins:

o C={1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}
e Input: A non-negative integer x (in cents, not dollars)

e Output: A selection of coins in C summing to x

Example: The Change Problem (USA Currency)

e Imagine | owe you 42¢, so | give you an arcade token

Example: The Change Problem (USA Currency)
e Imagine | owe you 42¢, so | give you an arcade token

e You would probably be annoyed with me, but why?

Example: The Change Problem (USA Currency)
e I|magine | owe you 42¢, so | give you an arcade token
e You would probably be annoyed with me, but why?

o | selected a coin that wasn’t in Cl!

Example: The Change Problem (USA Currency)
e I|magine | owe you 42¢, so | give you an arcade token
e You would probably be annoyed with me, but why?

o | selected a coin that wasn’t in C!

e The issue: my solution is incorrect

Example: The Change Problem (USA Currency)

e Imagine | owe you 42¢, so | give you 2 pennies

Example: The Change Problem (USA Currency)
e Imagine | owe you 42¢, so | give you 2 pennies

e You would probably be annoyed with me, but why?

Example: The Change Problem (USA Currency)
e Imagine | owe you 42¢, so | give you 2 pennies
e You would probably be annoyed with me, but why?

o All coins | selected were in C

Example: The Change Problem (USA Currency)
e Imagine | owe you 42¢, so | give you 2 pennies
e You would probably be annoyed with me, but why?

o All coins | selected were in C

o The coins | selected don’t sum to 42!

Example: The Change Problem (USA Currency)
e Imagine | owe you 42¢, so | give you 2 pennies
e You would probably be annoyed with me, but why?

o All coins | selected were in C

o The coins | selected don’t sum to 42!

e The issue: my solution is incorrect

Example: The Change Problem (USA Currency)

e I[magine | owe you 42¢, so | give you 42 pennies

Example: The Change Problem (USA Currency)
e I[magine | owe you 42¢, so | give you 42 pennies

e You would probably be annoyed with me, but why?

Example: The Change Problem (USA Currency)
e I[magine | owe you 42¢, so | give you 42 pennies
e You would probably be annoyed with me, but why?

o All coins | selected were in C

Example: The Change Problem (USA Currency)
e I[magine | owe you 42¢, so | give you 42 pennies
e You would probably be annoyed with me, but why?

o All coins | selected were in C

o The sum of my coins equals 42

Example: The Change Problem (USA Currency)
e I[magine | owe you 42¢, so | give you 42 pennies
e You would probably be annoyed with me, but why?

o All coins | selected were in C

o The sum of my coins equals 42

e The issue: your problem formulation was not specific!

Optimization Problems

e |n many problems, we may have many (even infinite) possible solutions

Optimization Problems
e |n many problems, we may have many (even infinite) possible solutions

e In all problems, we must define the precise definition of correctness

Optimization Problems
e |n many problems, we may have many (even infinite) possible solutions
e In all problems, we must define the precise definition of correctness

e We can also choose to define an objective function to optimize

Optimization Problems

e |n many problems, we may have many (even infinite) possible solutions
e In all problems, we must define the precise definition of correctness

e We can also choose to define an objective function to optimize

e A solution satisfying the definition of correctness is correct

Optimization Problems

In many problems, we may have many (even infinite) possible solutions
In all problems, we must define the precise definition of correctness
We can also choose to define an objective function to optimize

A solution satisfying the definition of correctness is correct

A correct solution optimizing the objective function is optimal

Revisiting the Change Problem (USA Currency)

e C={1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

Revisiting the Change Problem (USA Currency)
e C={1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

e Input: A non-negative integer x (in cents, not dollars)

Revisiting the Change Problem (USA Currency)
e C={1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}
e Input: A non-negative integer x (in cents, not dollars)

e Output: A selection of coins in C summing to x

Revisiting the Change Problem (USA Currency)

e C={1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

e Input: A non-negative integer x (in cents, not dollars)

e Output: A selection of coins in C summing to x such that the number of

selected coins is minimized

Multiple Optimal Solutions

e In some problems, there may be multiple equally-optimal solutions

Multiple Optimal Solutions
e In some problems, there may be multiple equally-optimal solutions

o Imagine if C={1¢, 2¢, 3¢, 4¢} and x = 5¢

Multiple Optimal Solutions
e In some problems, there may be multiple equally-optimal solutions
o Imagine if C={1¢, 2¢, 3¢, 4¢} and x = 5¢

o [1¢, 4¢] and [2¢, 3¢] are equally-optimal solutions

Multiple Optimal Solutions

e In some problems, there may be multiple equally-optimal solutions
o Imagine if C={1¢, 2¢, 3¢, 4¢} and x = 5¢
o [1¢, 4¢] and [2¢, 3¢] are equally-optimal solutions

e You should be happy receiving any such solution

Multiple Optimal Solutions

e In some problems, there may be multiple equally-optimal solutions
o Imagine if C={1¢, 2¢, 3¢, 4¢} and x = 5¢
o [1¢, 4¢] and [2¢, 3¢] are equally-optimal solutions

e You should be happy receiving any such solution

o If not, you need to fix your objective function!

Revisiting the Change Problem (USA Currency)
e C={1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

e |magine | owe you 42¢. How should | choose the coins to give you?

Let’s solve the problem!

Revisiting the Change Problem (USA Currency)

Algorithm change_ USA(x,C):
change «— empty list
For each coin ¢ in C (descending order):
While x >= c:
Add c¢ to change
X «— X - C

Return change

Revisiting the Change Problem (USA Currency)

Algorithm change_ USA(x,C):

change «— empty list

Does this work for any arbitrary currency?

Add ¢ to change
X «— X - C

Return change

Global vs. Local Search

e There may be many (even infinite!) possible solutions to our problem

Global vs. Local Search
e There may be many (even infinite!) possible solutions to our problem

o Exhaustive: Simply looking at every possible solution

Global vs. Local Search
e There may be many (even infinite!) possible solutions to our problem
o Exhaustive: Simply looking at every possible solution

e When we try to cleverly search for an optimal solution more quickly:

Global vs. Local Search

e There may be many (even infinite!) possible solutions to our problem
o Exhaustive: Simply looking at every possible solution

e When we try to cleverly search for an optimal solution more quickly:

o Global: We can look at entire solutions at a time

Global vs. Local Search

e There may be many (even infinite!) possible solutions to our problem
o Exhaustive: Simply looking at every possible solution

e When we try to cleverly search for an optimal solution more quickly:
o Global: We can look at entire solutions at a time

o Local: We can break solutions into parts and optimize part-by-part

Local Search: The Greedy Method

e Greedy Method: Selecting the best possible choice at each step

Local Search: The Greedy Method

e Greedy Method: Selecting the best possible choice at each step

e Note that this does not always work!!!

Local Search: The Greedy Method

e Greedy Method: Selecting the best possible choice at each step
e Note that this does not always work!!!

o We often skip what’s immediately best to improve in the long-run

Local Search: The Greedy Method

e Greedy Method: Selecting the best possible choice at each step
e Note that this does not always work!!!
o We often skip what’s immediately best to improve in the long-run

o Example: Buying vs. leasing a car

Local Search: The Greedy Method

e Greedy Method: Selecting the best possible choice at each step
e Note that this does not always work!!!
o We often skip what’s immediately best to improve in the long-run

o Example: Buying vs. leasing a car

e Thus, it's important to prove the correctness of a Greedy Algorithm

Revisiting the Change Problem

o C={l¢, 3¢, 4¢}

Revisiting the Change Problem
o C={1¢, 3¢, 4¢)

e I[magine | owe you 6¢. How should | choose the coins to give you?

Revisiting the Change Problem
o C={1¢, 3¢, 4¢}
e I[magine | owe you 6¢. How should | choose the coins to give you?

o The greedy algorithm would return [4¢, 1¢, 1¢]

Revisiting the Change Problem

o C={1¢, 3¢, 4¢}

e Imagine | owe you 6¢. How should | choose the coins to give you?
o The greedy algorithm would return [4¢, 1¢, 1¢]

o The optimal solution is [3¢, 3¢]

Revisiting the Change Problem

o C={l¢, 3¢, 4¢}

e I[magine | owe you 6¢. How should | choose the coins to give you?
o The greedy algorithm would return [4¢, 1¢, 1¢]
o The optimal solution is [3¢, 3¢]

o Our greedy algorithm doesn’t work for all possible currencies!!!

Immediate Benefit vs. Opportunity Cost

Immediate Benefit vs. Opportunity Cost

e Immediate Benefit: How much do | gain from this choice?

Immediate Benefit vs. Opportunity Cost
e Immediate Benefit: How much do | gain from this choice?

e Opportunity Cost: How much is the future restricted by this choice?

Immediate Benefit vs. Opportunity Cost
e Immediate Benefit: How much do | gain from this choice?
e Opportunity Cost: How much is the future restricted by this choice?

e Greedy: Take the best immediate benefit and ignore opportunity costs

Immediate Benefit vs. Opportunity Cost

e Immediate Benefit: How much do | gain from this choice?

e Opportunity Cost: How much is the future restricted by this choice?

e Greedy: Take the best immediate benefit and ignore opportunity costs

o Optimal when immediate benefit outweighs opportunity costs

Example: The Event Scheduling Problem

e Imagine you own an event room, and you want to schedule events

Example: The Event Scheduling Problem
e Imagine you own an event room, and you want to schedule events

o You charge a flat rate, regardless of the length of the event

Example: The Event Scheduling Problem
e Imagine you own an event room, and you want to schedule events
o You charge a flat rate, regardless of the length of the event

o Thus, you want to schedule as many events as possible

Example: The Event Scheduling Problem

e Imagine you own an event room, and you want to schedule events
o You charge a flat rate, regardless of the length of the event
o Thus, you want to schedule as many events as possible

o However, events cannot overlap

Example: The Event Scheduling Problem

e Input: All n possible events E = [(start,, end)), ..., (start_, end)]

Example: The Event Scheduling Problem
e Input: All n possible events E = [(start,, end)), ..., (start_, end)]

e Output: A non-overlapping subset of E maximizing its size

Example: The Event Scheduling Problem
e Input: All n possible events E = [(start,, end)), ..., (start_, end)]
e Output: A non-overlapping subset of E maximizing its size

e |f we wanted to design a greedy algorithm, what would we optimize?

Example: The Event Scheduling Problem
e Input: All n possible events E = [(start,, end)), ..., (start_, end)]
e Output: A non-overlapping subset of E maximizing its size

e |f we wanted to design a greedy algorithm, what would we optimize?

o Shortest duration?
o Earliest start time?
o Fewest conflicts?

o Earliest end time?

Counterexample: Shortest Duration

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Shortest Duration

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
N T T B

Counterexample: Shortest Duration

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
N T T B

!

Counterexample: Shortest Duration

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Shortest Duration

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Earliest Start Time

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Earliest Start Time

9 10 1 12 13 14 15 16
I 1 1 1 1 1 1

0O 1 2 3 4 5 6 7 8
N T T B B R

Counterexample: Earliest Start Time

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

I-I-I-I-I-I-I-I-I-H-H-H-I-\

Counterexample: Earliest Start Time

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Earliest Start Time
o 1 2 3 4 5 6 7 8 9 10 1N 122 13 14 15 16
U U U Y T A A A

behrnn

Counterexample: Fewest Conflicts

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Fewest Conflicts

/7 8 9 10 1 12 13 14 15 16

Counterexample: Fewest Conflicts

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Fewest Conflicts

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Fewest Conflicts

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

i

Counterexample: Fewest Conflicts

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Fewest Conflicts

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Fewest Conflicts

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Fewest Conflicts

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Earliest End Time

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

Counterexample: Earliest End Time

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

| can’t think of one!

Counterexample: Earliest End Time

o 1 2 3 4 5 6 7 8 9 10 1N 12 13 14 15 16

We still need to prove it's correctl!!!

Example: The Event Scheduling Problem

Algorithm schedule(E):
Sort E in ascending order of end time
curr_time < negative infinity
events «— empty list
For each event (start,end) in E:
If start = curr_time:
Add (start,end) to events
curr_time «— end
Return events

Proofs: The Exchange Argument

e Common approach for proving greedy algorithms

Proofs: The Exchange Argument
e Common approach for proving greedy algorithms

o Let g be the first greedy choice

Proofs: The Exchange Argument
e Common approach for proving greedy algorithms
o Let g be the first greedy choice

o Let S be any optimal solution that does not include g

Proofs: The Exchange Argument
e Common approach for proving greedy algorithms
o Let g be the first greedy choice
o Let S be any optimal solution that does not include g

o Create S’ by exchanging a choice in S with g and show that

Proofs: The Exchange Argument
e Common approach for proving greedy algorithms
o Let g be the first greedy choice
o Let S be any optimal solution that does not include g
o Create S’ by exchanging a choice in S with g and show that

m S’ is avalid solution

Proofs: The Exchange Argument
e Common approach for proving greedy algorithms
o Let g be the first greedy choice
o Let S be any optimal solution that does not include g
o Create S’ by exchanging a choice in S with g and show that
m S’ is avalid solution

m S’ isjustas good, or better than, S

Proofs: The Exchange Argument
e Common approach for proving greedy algorithms

o Let g be the first greedy choice

Let’s try to prove our algorithm!

reate S by exchanging a choice'in g and show
m S’ is avalid solution

m S’ isjustas good, or better than, S

