Algorithm Problem Solving (APS): Greedy Method

Niema Moshiri
UC San Diego SPIS 2019

Example: The Change Problem (USA Currency)

- In the USA, we commonly use the following coins:
- $\boldsymbol{C}=\{1 \Phi$ (penny), 5Φ (nickel), $10 \$$ (dime), 25Φ (quarter) $\}$

Example: The Change Problem (USA Currency)

- In the USA, we commonly use the following coins:
- $\boldsymbol{C}=\{1 \Phi$ (penny), $5 \$$ (nickel), $10 \$$ (dime), $25 \$$ (quarter) $\}$
- Input: A non-negative integer \boldsymbol{x} (in cents, not dollars)

Example: The Change Problem (USA Currency)

- In the USA, we commonly use the following coins:
- $\boldsymbol{C}=\{1 \Phi$ (penny), $5 \$$ (nickel), $10 \$$ (dime), $25 \$$ (quarter) $\}$
- Input: A non-negative integer \boldsymbol{x} (in cents, not dollars)
- Output: A selection of coins in \mathbf{C} summing to x

Example: The Change Problem (USA Currency)

- Imagine I owe you 42 , so I give you an arcade token

Example: The Change Problem (USA Currency)

- Imagine I owe you 42 ¢, so I give you an arcade token
- You would probably be annoyed with me, but why?

Example: The Change Problem (USA Currency)

- Imagine I owe you 42 \&, so I give you an arcade token
- You would probably be annoyed with me, but why?
- I selected a coin that wasn't in \mathbf{C} !

Example: The Change Problem (USA Currency)

- Imagine I owe you 42 \&, so I give you an arcade token
- You would probably be annoyed with me, but why?
- I selected a coin that wasn't in \mathbf{C} !
- The issue: my solution is incorrect

Example: The Change Problem (USA Currency)

- Imagine I owe you 42\$, so I give you 2 pennies

Example: The Change Problem (USA Currency)

- Imagine I owe you 42 \&, so I give you 2 pennies
- You would probably be annoyed with me, but why?

Example: The Change Problem (USA Currency)

- Imagine I owe you 42 ¢, so I give you 2 pennies
- You would probably be annoyed with me, but why?
- All coins I selected were in \mathbf{C}

Example: The Change Problem (USA Currency)

- Imagine I owe you 42థ, so I give you 2 pennies
- You would probably be annoyed with me, but why?
- All coins I selected were in \mathbf{C}
- The coins I selected don't sum to 42 !

Example: The Change Problem (USA Currency)

- Imagine I owe you 42 ¢, so I give you 2 pennies
- You would probably be annoyed with me, but why?
- All coins I selected were in \mathbf{C}
- The coins I selected don't sum to 42 !
- The issue: my solution is incorrect

Example: The Change Problem (USA Currency)

- Imagine I owe you 42\$, so I give you 42 pennies

Example: The Change Problem (USA Currency)

- Imagine I owe you 42 \&, so I give you 42 pennies
- You would probably be annoyed with me, but why?

Example: The Change Problem (USA Currency)

- Imagine I owe you 42థ, so I give you 42 pennies
- You would probably be annoyed with me, but why?
- All coins I selected were in C

Example: The Change Problem (USA Currency)

- Imagine I owe you 42థ, so I give you 42 pennies
- You would probably be annoyed with me, but why?
- All coins I selected were in \mathbf{C}
- The sum of my coins equals 42

Example: The Change Problem (USA Currency)

- Imagine I owe you 42థ, so I give you 42 pennies
- You would probably be annoyed with me, but why?
- All coins I selected were in \mathbf{C}
- The sum of my coins equals 42
- The issue: your problem formulation was not specific!

Optimization Problems

- In many problems, we may have many (even infinite) possible solutions

Optimization Problems

- In many problems, we may have many (even infinite) possible solutions
- In all problems, we must define the precise definition of correctness

Optimization Problems

- In many problems, we may have many (even infinite) possible solutions
- In all problems, we must define the precise definition of correctness
- We can also choose to define an objective function to optimize

Optimization Problems

- In many problems, we may have many (even infinite) possible solutions
- In all problems, we must define the precise definition of correctness
- We can also choose to define an objective function to optimize
- A solution satisfying the definition of correctness is correct

Optimization Problems

- In many problems, we may have many (even infinite) possible solutions
- In all problems, we must define the precise definition of correctness
- We can also choose to define an objective function to optimize
- A solution satisfying the definition of correctness is correct
- A correct solution optimizing the objective function is optimal

Revisiting the Change Problem (USA Currency)

- $\mathbf{C}=\{1 \Phi$ (penny), $5 \$$ (nickel), $10 \$$ (dime), $25 \$$ (quarter) $\}$

Revisiting the Change Problem (USA Currency)

- $\boldsymbol{C}=\{1 \Phi$ (penny), 5Φ (nickel), $10 \$$ (dime), $25 \$$ (quarter) $\}$
- Input: A non-negative integer \boldsymbol{x} (in cents, not dollars)

Revisiting the Change Problem (USA Currency)

- $\boldsymbol{C}=\{1 \Phi$ (penny), 5Φ (nickel), $10 \$$ (dime), $25 \$$ (quarter) $\}$
- Input: A non-negative integer \boldsymbol{x} (in cents, not dollars)
- Output: A selection of coins in \mathbf{C} summing to \boldsymbol{x}

Revisiting the Change Problem (USA Currency)

- $\mathbf{C}=\{1 \Phi$ (penny), $5 \$$ (nickel), $10 \$$ (dime), $25 \$$ (quarter) $\}$
- Input: A non-negative integer \boldsymbol{x} (in cents, not dollars)
- Output: A selection of coins in \mathbf{C} summing to \boldsymbol{x} such that the number of
selected coins is minimized

Multiple Optimal Solutions

- In some problems, there may be multiple equally-optimal solutions

Multiple Optimal Solutions

- In some problems, there may be multiple equally-optimal solutions
- Imagine if $\boldsymbol{C}=\{1 \phi, 2 \phi, 3 \phi, 4 \phi\}$ and $\boldsymbol{x}=5 \phi$

Multiple Optimal Solutions

- In some problems, there may be multiple equally-optimal solutions
- Imagine if $\boldsymbol{C}=\{1 \phi, 2 \phi, 3 \phi, 4 \phi\}$ and $\boldsymbol{x}=5 \phi$
- $[1 \$, 4 \$]$ and $[2 \$, 3 \$]$ are equally-optimal solutions

Multiple Optimal Solutions

- In some problems, there may be multiple equally-optimal solutions
- Imagine if $\boldsymbol{C}=\{1 \notin, 2 \phi, 3 \notin, 4 \notin\}$ and $\boldsymbol{x}=5 \$$
- $[1 \Phi, 4 \$]$ and $[2 \$, 3 \$]$ are equally-optimal solutions
- You should be happy receiving any such solution

Multiple Optimal Solutions

- In some problems, there may be multiple equally-optimal solutions
- Imagine if $\boldsymbol{C}=\{1 \notin, 2 \phi, 3 \notin, 4 \notin\}$ and $\boldsymbol{x}=5 \$$
- $[1 \$, 4 \notin]$ and $[2 \$, 3 \$]$ are equally-optimal solutions
- You should be happy receiving any such solution
- If not, you need to fix your objective function!

Revisiting the Change Problem (USA Currency)

- $\boldsymbol{C}=\{1 \Phi$ (penny), 5Φ (nickel), 10Φ (dime), 25Φ (quarter) $\}$
- Imagine I owe you 42 \downarrow. How should I choose the coins to give you?

Let's solve the problem!

Revisiting the Change Problem (USA Currency)

```
Algorithm change_USA(x,C):
change \leftarrow empty list
For each coin c in C (descending order):
    While x >= c:
        Add c to change
        x}\leftarrow\mathbf{x}-\mathbf{c
    Return change
```


Revisiting the Change Problem (USA Currency)

Algorithm change_USA(x,C):

```
change \leftarrow empty list
```


Does this work for any arbitrary currency?

$$
\begin{aligned}
& \text { Add } \mathbf{c} \text { to change } \\
& \mathbf{x} \leftarrow \mathbf{x}-\mathbf{c}
\end{aligned}
$$

Return change

Global vs. Local Search

- There may be many (even infinite!) possible solutions to our problem

Global vs. Local Search

- There may be many (even infinite!) possible solutions to our problem
- Exhaustive: Simply looking at every possible solution

Global vs. Local Search

- There may be many (even infinite!) possible solutions to our problem
- Exhaustive: Simply looking at every possible solution
- When we try to cleverly search for an optimal solution more quickly:

Global vs. Local Search

- There may be many (even infinite!) possible solutions to our problem
- Exhaustive: Simply looking at every possible solution
- When we try to cleverly search for an optimal solution more quickly:
- Global: We can look at entire solutions at a time

Global vs. Local Search

- There may be many (even infinite!) possible solutions to our problem
- Exhaustive: Simply looking at every possible solution
- When we try to cleverly search for an optimal solution more quickly:
- Global: We can look at entire solutions at a time
- Local: We can break solutions into parts and optimize part-by-part

Local Search: The Greedy Method

- Greedy Method: Selecting the best possible choice at each step

Local Search: The Greedy Method

- Greedy Method: Selecting the best possible choice at each step
- Note that this does not always work!!!

Local Search: The Greedy Method

- Greedy Method: Selecting the best possible choice at each step
- Note that this does not always work!!!
- We often skip what's immediately best to improve in the long-run

Local Search: The Greedy Method

- Greedy Method: Selecting the best possible choice at each step
- Note that this does not always work!!!
- We often skip what's immediately best to improve in the long-run
- Example: Buying vs. leasing a car

Local Search: The Greedy Method

- Greedy Method: Selecting the best possible choice at each step
- Note that this does not always work!!!
- We often skip what's immediately best to improve in the long-run
- Example: Buying vs. leasing a car
- Thus, it's important to prove the correctness of a Greedy Algorithm

Revisiting the Change Problem

- $\boldsymbol{C}=\{1 ष, 3 \phi, 4 \phi\}$

Revisiting the Change Problem

- $\boldsymbol{C}=\{1 \phi, 3 \phi, 4 \phi\}$
- Imagine I owe you $6 \$$. How should I choose the coins to give you?

Revisiting the Change Problem

- $\boldsymbol{C}=\{1 ष, 3 \phi, 4 \notin\}$
- Imagine I owe you $6 \$$. How should I choose the coins to give you?
- The greedy algorithm would return [4థ, 1ष, 1ष]

Revisiting the Change Problem

- $\boldsymbol{C}=\{1 ष, 3 \phi, 4 \notin\}$
- Imagine I owe you $6 \$$. How should I choose the coins to give you?
- The greedy algorithm would return [4థ, 1ष, 1ष]
- The optimal solution is [3¢, 3\$]

Revisiting the Change Problem

- $\boldsymbol{C}=\{1 \phi, 3 \phi, 4 \phi\}$
- Imagine I owe you $6 \$$. How should I choose the coins to give you?
- The greedy algorithm would return [4థ, 1ष, 1ष]
- The optimal solution is [3\$, 3\$]
- Our greedy algorithm doesn't work for all possible currencies!!!

Immediate Benefit vs. Opportunity Cost

Immediate Benefit vs. Opportunity Cost

- Immediate Benefit: How much do I gain from this choice?

Immediate Benefit vs. Opportunity Cost

- Immediate Benefit: How much do I gain from this choice?
- Opportunity Cost: How much is the future restricted by this choice?

Immediate Benefit vs. Opportunity Cost

- Immediate Benefit: How much do I gain from this choice?
- Opportunity Cost: How much is the future restricted by this choice?
- Greedy: Take the best immediate benefit and ignore opportunity costs

Immediate Benefit vs. Opportunity Cost

- Immediate Benefit: How much do I gain from this choice?
- Opportunity Cost: How much is the future restricted by this choice?
- Greedy: Take the best immediate benefit and ignore opportunity costs
- Optimal when immediate benefit outweighs opportunity costs

Example: The Event Scheduling Problem

- Imagine you own an event room, and you want to schedule events

Example: The Event Scheduling Problem

- Imagine you own an event room, and you want to schedule events
- You charge a flat rate, regardless of the length of the event

Example: The Event Scheduling Problem

- Imagine you own an event room, and you want to schedule events
- You charge a flat rate, regardless of the length of the event
- Thus, you want to schedule as many events as possible

Example: The Event Scheduling Problem

- Imagine you own an event room, and you want to schedule events
- You charge a flat rate, regardless of the length of the event
- Thus, you want to schedule as many events as possible
- However, events cannot overlap

Example: The Event Scheduling Problem

- Input: All \boldsymbol{n} possible events $\boldsymbol{E}=\left[\left(\right.\right.$ start $_{1}$, end $\left._{1}\right), \ldots,\left(\right.$ start $_{n}$, end $\left.\left._{n}\right)\right]$

Example: The Event Scheduling Problem

- Input: All \boldsymbol{n} possible events $\boldsymbol{E}=\left[\left(\right.\right.$ start $_{1}$, end $\left._{1}\right), \ldots$, start $_{n}$, end $\left.\left.{ }_{n}\right)\right]$
- Output: A non-overlapping subset of \boldsymbol{E} maximizing its size

Example: The Event Scheduling Problem

- Input: All \boldsymbol{n} possible events $\boldsymbol{E}=\left[\left(\right.\right.$ start $_{1}$, end $\left._{1}\right), \ldots,\left(\right.$ start $_{n}$, end $\left.\left._{n}\right)\right]$
- Output: A non-overlapping subset of \boldsymbol{E} maximizing its size
- If we wanted to design a greedy algorithm, what would we optimize?

Example: The Event Scheduling Problem

- Input: All \boldsymbol{n} possible events $\boldsymbol{E}=\left[\left(\right.\right.$ start $_{1}$, end $\left._{1}\right), \ldots,\left(\right.$ start $_{n}$, end $\left.\left._{n}\right)\right]$
- Output: A non-overlapping subset of \boldsymbol{E} maximizing its size
- If we wanted to design a greedy algorithm, what would we optimize?
- Shortest duration?
- Earliest start time?
- Fewest conflicts?
- Earliest end time?

Counterexample: Shortest Duration

IIIİíinininininininin

Counterexample: Shortest Duration

Counterexample: Shortest Duration

Counterexample: Shortest Duration

Counterexample: Shortest Duration

Counterexample: Earliest Start Time

IIIİíininininininin

Counterexample: Earliest Start Time

Counterexample: Fewest Conflicts

IIIİíinininininininin

Counterexample: Fewest Conflicts

Counterexample: Fewest Conflicts

Counterexample: Fewest Conflicts

Counterexample: Fewest Conflicts

Counterexample: Fewest Conflicts

Counterexample: Fewest Conflicts

Counterexample: Fewest Conflicts

Counterexample: Fewest Conflicts

Counterexample: Earliest End Time

IIIİíinininininininin

Counterexample: Earliest End Time

Counterexample: Earliest End Time

Example: The Event Scheduling Problem

Algorithm schedule(E):

```
Sort E in ascending order of end time
curr_time \leftarrow negative infinity
events \leftarrow empty list
For each event (start,end) in E:
    If start \geq curr_time:
    Add (start,end) to events
    curr_time \leftarrow end
Return events
```


Proofs: The Exchange Argument

- Common approach for proving greedy algorithms

Proofs: The Exchange Argument

- Common approach for proving greedy algorithms
- Let g be the first greedy choice

Proofs: The Exchange Argument

- Common approach for proving greedy algorithms
- Let g be the first greedy choice
- Let S be any optimal solution that does not include g

Proofs: The Exchange Argument

- Common approach for proving greedy algorithms
- Let g be the first greedy choice
- Let S be any optimal solution that does not include g
- Create S' by exchanging a choice in S with g and show that

Proofs: The Exchange Argument

- Common approach for proving greedy algorithms
- Let g be the first greedy choice
- Let S be any optimal solution that does not include g
- Create S^{\prime} by exchanging a choice in S with g and show that
- S^{\prime} is a valid solution

Proofs: The Exchange Argument

- Common approach for proving greedy algorithms
- Let g be the first greedy choice
- Let S be any optimal solution that does not include g
- Create S^{\prime} by exchanging a choice in S with g and show that
- S^{\prime} is a valid solution
- S^{\prime} is just as good, or better than, S

Proofs: The Exchange Argument

- Common approach for proving greedy algorithms
- Let g be the first greedy choice

Let's try to prove our algorithm!

- Create S' by exchanging a choice in S with g and show that
- S^{\prime} is a valid solution
- S^{\prime} is just as good, or better than, S

