
Algorithm Problem Solving (APS):

Greedy Method

Niema Moshiri
UC San Diego SPIS 2019

Example: The Change Problem (USA Currency)

● In the USA, we commonly use the following coins:

○ C = {1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

Example: The Change Problem (USA Currency)

● In the USA, we commonly use the following coins:

○ C = {1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

● Input: A non-negative integer x (in cents, not dollars)

Example: The Change Problem (USA Currency)

● In the USA, we commonly use the following coins:

○ C = {1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

● Input: A non-negative integer x (in cents, not dollars)

● Output: A selection of coins in C summing to x

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you an arcade token

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you an arcade token

● You would probably be annoyed with me, but why?

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you an arcade token

● You would probably be annoyed with me, but why?

○ I selected a coin that wasn’t in C!

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you an arcade token

● You would probably be annoyed with me, but why?

○ I selected a coin that wasn’t in C!

● The issue: my solution is incorrect

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 2 pennies

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 2 pennies

● You would probably be annoyed with me, but why?

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 2 pennies

● You would probably be annoyed with me, but why?

○ All coins I selected were in C

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 2 pennies

● You would probably be annoyed with me, but why?

○ All coins I selected were in C

○ The coins I selected don’t sum to 42!

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 2 pennies

● You would probably be annoyed with me, but why?

○ All coins I selected were in C

○ The coins I selected don’t sum to 42!

● The issue: my solution is incorrect

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 42 pennies

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 42 pennies

● You would probably be annoyed with me, but why?

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 42 pennies

● You would probably be annoyed with me, but why?

○ All coins I selected were in C

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 42 pennies

● You would probably be annoyed with me, but why?

○ All coins I selected were in C

○ The sum of my coins equals 42

Example: The Change Problem (USA Currency)

● Imagine I owe you 42¢, so I give you 42 pennies

● You would probably be annoyed with me, but why?

○ All coins I selected were in C

○ The sum of my coins equals 42

● The issue: your problem formulation was not specific!

Optimization Problems

● In many problems, we may have many (even infinite) possible solutions

Optimization Problems

● In many problems, we may have many (even infinite) possible solutions

● In all problems, we must define the precise definition of correctness

Optimization Problems

● In many problems, we may have many (even infinite) possible solutions

● In all problems, we must define the precise definition of correctness

● We can also choose to define an objective function to optimize

Optimization Problems

● In many problems, we may have many (even infinite) possible solutions

● In all problems, we must define the precise definition of correctness

● We can also choose to define an objective function to optimize

● A solution satisfying the definition of correctness is correct

Optimization Problems

● In many problems, we may have many (even infinite) possible solutions

● In all problems, we must define the precise definition of correctness

● We can also choose to define an objective function to optimize

● A solution satisfying the definition of correctness is correct

● A correct solution optimizing the objective function is optimal

Revisiting the Change Problem (USA Currency)

● C = {1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

Revisiting the Change Problem (USA Currency)

● C = {1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

● Input: A non-negative integer x (in cents, not dollars)

Revisiting the Change Problem (USA Currency)

● C = {1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

● Input: A non-negative integer x (in cents, not dollars)

● Output: A selection of coins in C summing to x

Revisiting the Change Problem (USA Currency)

● C = {1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

● Input: A non-negative integer x (in cents, not dollars)

● Output: A selection of coins in C summing to x such that the number of

selected coins is minimized

Multiple Optimal Solutions

● In some problems, there may be multiple equally-optimal solutions

Multiple Optimal Solutions

● In some problems, there may be multiple equally-optimal solutions

○ Imagine if C = {1¢, 2¢, 3¢, 4¢} and x = 5¢

Multiple Optimal Solutions

● In some problems, there may be multiple equally-optimal solutions

○ Imagine if C = {1¢, 2¢, 3¢, 4¢} and x = 5¢

○ [1¢, 4¢] and [2¢, 3¢] are equally-optimal solutions

Multiple Optimal Solutions

● In some problems, there may be multiple equally-optimal solutions

○ Imagine if C = {1¢, 2¢, 3¢, 4¢} and x = 5¢

○ [1¢, 4¢] and [2¢, 3¢] are equally-optimal solutions

● You should be happy receiving any such solution

Multiple Optimal Solutions

● In some problems, there may be multiple equally-optimal solutions

○ Imagine if C = {1¢, 2¢, 3¢, 4¢} and x = 5¢

○ [1¢, 4¢] and [2¢, 3¢] are equally-optimal solutions

● You should be happy receiving any such solution

○ If not, you need to fix your objective function!

Revisiting the Change Problem (USA Currency)

● C = {1¢ (penny), 5¢ (nickel), 10¢ (dime), 25¢ (quarter)}

● Imagine I owe you 42¢. How should I choose the coins to give you?

Let’s solve the problem!

Revisiting the Change Problem (USA Currency)

Algorithm change_USA(x,C):

 change ← empty list

 For each coin c in C (descending order):

 While x >= c:

 Add c to change

 x ← x - c

 Return change

Revisiting the Change Problem (USA Currency)

Algorithm change_USA(x,C):

 change ← empty list

 For each coin c in C (descending order):

 While x >= c:

 Add c to change

 x ← x - c

 Return change

Does this work for any arbitrary currency?

Global vs. Local Search

● There may be many (even infinite!) possible solutions to our problem

Global vs. Local Search

● There may be many (even infinite!) possible solutions to our problem

○ Exhaustive: Simply looking at every possible solution

Global vs. Local Search

● There may be many (even infinite!) possible solutions to our problem

○ Exhaustive: Simply looking at every possible solution

● When we try to cleverly search for an optimal solution more quickly:

Global vs. Local Search

● There may be many (even infinite!) possible solutions to our problem

○ Exhaustive: Simply looking at every possible solution

● When we try to cleverly search for an optimal solution more quickly:

○ Global: We can look at entire solutions at a time

Global vs. Local Search

● There may be many (even infinite!) possible solutions to our problem

○ Exhaustive: Simply looking at every possible solution

● When we try to cleverly search for an optimal solution more quickly:

○ Global: We can look at entire solutions at a time

○ Local: We can break solutions into parts and optimize part-by-part

Local Search: The Greedy Method

● Greedy Method: Selecting the best possible choice at each step

Local Search: The Greedy Method

● Greedy Method: Selecting the best possible choice at each step

● Note that this does not always work!!!

Local Search: The Greedy Method

● Greedy Method: Selecting the best possible choice at each step

● Note that this does not always work!!!

○ We often skip what’s immediately best to improve in the long-run

Local Search: The Greedy Method

● Greedy Method: Selecting the best possible choice at each step

● Note that this does not always work!!!

○ We often skip what’s immediately best to improve in the long-run

○ Example: Buying vs. leasing a car

Local Search: The Greedy Method

● Greedy Method: Selecting the best possible choice at each step

● Note that this does not always work!!!

○ We often skip what’s immediately best to improve in the long-run

○ Example: Buying vs. leasing a car

● Thus, it’s important to prove the correctness of a Greedy Algorithm

Revisiting the Change Problem

● C = {1¢, 3¢, 4¢}

Revisiting the Change Problem

● C = {1¢, 3¢, 4¢}

● Imagine I owe you 6¢. How should I choose the coins to give you?

Revisiting the Change Problem

● C = {1¢, 3¢, 4¢}

● Imagine I owe you 6¢. How should I choose the coins to give you?

○ The greedy algorithm would return [4¢, 1¢, 1¢]

Revisiting the Change Problem

● C = {1¢, 3¢, 4¢}

● Imagine I owe you 6¢. How should I choose the coins to give you?

○ The greedy algorithm would return [4¢, 1¢, 1¢]

○ The optimal solution is [3¢, 3¢]

Revisiting the Change Problem

● C = {1¢, 3¢, 4¢}

● Imagine I owe you 6¢. How should I choose the coins to give you?

○ The greedy algorithm would return [4¢, 1¢, 1¢]

○ The optimal solution is [3¢, 3¢]

○ Our greedy algorithm doesn’t work for all possible currencies!!!

Immediate Benefit vs. Opportunity Cost

Immediate Benefit vs. Opportunity Cost

● Immediate Benefit: How much do I gain from this choice?

Immediate Benefit vs. Opportunity Cost

● Immediate Benefit: How much do I gain from this choice?

● Opportunity Cost: How much is the future restricted by this choice?

Immediate Benefit vs. Opportunity Cost

● Immediate Benefit: How much do I gain from this choice?

● Opportunity Cost: How much is the future restricted by this choice?

● Greedy: Take the best immediate benefit and ignore opportunity costs

Immediate Benefit vs. Opportunity Cost

● Immediate Benefit: How much do I gain from this choice?

● Opportunity Cost: How much is the future restricted by this choice?

● Greedy: Take the best immediate benefit and ignore opportunity costs

○ Optimal when immediate benefit outweighs opportunity costs

Example: The Event Scheduling Problem

● Imagine you own an event room, and you want to schedule events

Example: The Event Scheduling Problem

● Imagine you own an event room, and you want to schedule events

○ You charge a flat rate, regardless of the length of the event

Example: The Event Scheduling Problem

● Imagine you own an event room, and you want to schedule events

○ You charge a flat rate, regardless of the length of the event

○ Thus, you want to schedule as many events as possible

Example: The Event Scheduling Problem

● Imagine you own an event room, and you want to schedule events

○ You charge a flat rate, regardless of the length of the event

○ Thus, you want to schedule as many events as possible

○ However, events cannot overlap

Example: The Event Scheduling Problem

● Input: All n possible events E = [(start1, end1), …, (startn, endn)]

Example: The Event Scheduling Problem

● Input: All n possible events E = [(start1, end1), …, (startn, endn)]

● Output: A non-overlapping subset of E maximizing its size

Example: The Event Scheduling Problem

● Input: All n possible events E = [(start1, end1), …, (startn, endn)]

● Output: A non-overlapping subset of E maximizing its size

● If we wanted to design a greedy algorithm, what would we optimize?

Example: The Event Scheduling Problem

● Input: All n possible events E = [(start1, end1), …, (startn, endn)]

● Output: A non-overlapping subset of E maximizing its size

● If we wanted to design a greedy algorithm, what would we optimize?

○ Shortest duration?

○ Earliest start time?

○ Fewest conflicts?

○ Earliest end time?

Counterexample: Shortest Duration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Shortest Duration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Shortest Duration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Shortest Duration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Shortest Duration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Earliest Start Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Earliest Start Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Earliest Start Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Earliest Start Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Earliest Start Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Fewest Conflicts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Fewest Conflicts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Fewest Conflicts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Fewest Conflicts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Fewest Conflicts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Fewest Conflicts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Fewest Conflicts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Fewest Conflicts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Fewest Conflicts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Earliest End Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Counterexample: Earliest End Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I can’t think of one!

Counterexample: Earliest End Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I can’t think of one!
We still need to prove it’s correct!!!

Example: The Event Scheduling Problem

Algorithm schedule(E):

 Sort E in ascending order of end time

 curr_time ← negative infinity

 events ← empty list

 For each event (start,end) in E:

 If start ≥ curr_time:

 Add (start,end) to events

 curr_time ← end

 Return events

Proofs: The Exchange Argument

● Common approach for proving greedy algorithms

Proofs: The Exchange Argument

● Common approach for proving greedy algorithms

○ Let g be the first greedy choice

Proofs: The Exchange Argument

● Common approach for proving greedy algorithms

○ Let g be the first greedy choice

○ Let S be any optimal solution that does not include g

Proofs: The Exchange Argument

● Common approach for proving greedy algorithms

○ Let g be the first greedy choice

○ Let S be any optimal solution that does not include g

○ Create S’ by exchanging a choice in S with g and show that

Proofs: The Exchange Argument

● Common approach for proving greedy algorithms

○ Let g be the first greedy choice

○ Let S be any optimal solution that does not include g

○ Create S’ by exchanging a choice in S with g and show that

■ S’ is a valid solution

Proofs: The Exchange Argument

● Common approach for proving greedy algorithms

○ Let g be the first greedy choice

○ Let S be any optimal solution that does not include g

○ Create S’ by exchanging a choice in S with g and show that

■ S’ is a valid solution

■ S’ is just as good, or better than, S

Proofs: The Exchange Argument

● Common approach for proving greedy algorithms

○ Let g be the first greedy choice

○ Let S be any optimal solution that does not include g

○ Create S’ by exchanging a choice in S with g and show that

■ S’ is a valid solution

■ S’ is just as good, or better than, S

Let’s try to prove our algorithm!

